Elements in Barley, Fescue, and Oats

Nelson O. Price and W. W. Moschler

Significant changes in plant mineral composition due to residual lime effects in the soil were shown in fescue, oats, and barley four, nine, and 11 years after application. In general, copper, magnesium, and manganese levels showed significant decreases in fescue the third and fourth years, whereas calcium was significantly increased. Iron, phosphorus, and zinc contents were unaffected. The oat composition showed copper, zinc, and manganese significantly lowered and magnesium increased. Calcium, iron, and phosphorus were unaffected. Barley grown

ime continues to be a most important agent to correct and control soil acidity in this country and other parts of the world. Many observations have been made on the use of lime, its effect on the soil and on plant composition. Adams and Pearson (1967) found the response to lime varies considerably for different crops on the same soil. They further observed that liming acid soils tends to decrease the availability of several soil-supplied nutrients which resulted in "over-liming injury" since the availability of some nutrients was decreased to a deficient level. They also found that changes in concentrations of P, K, S, B, Cu, Mo, and Zn in plants were due to the effect of lime. Foy and Brown (1964) showed great differences in response to lime, even among varieties of the same species. Weeks and Lathwell (1967) noted that a number of states in the Northwestern U.S.A. recommend liming of the soil to less than pH 6.5 because there is danger of inducing deficiencies of various trace elements of higher pH values. He also showed that the composition of red clover, oats, and timothy for 10 different elements taken from all parts of Pennsylvania was markedly affected by limit levels.

Other workers (Blevins and Massey, 1959; Fisher, 1969; Seitz et al., 1959; Wear and Patterson, 1962; and Weeks and Lathwell, 1967) confirm the effect of soil liming on the composition of plants and the uptake of minerals. The residual effects of lime on the composition of certain plants have been reported by Price and Moschler (1965). They found that residual lime in the soil resulted in significant changes in the plant composition of peanut foliage, soybean foliage, and orchardgrass seven and nine years after lime application. Copper, Co, Mn, Fe, and Zn were significantly lowered in each plant, whereas Mo was significantly increased. Controlled experiments by Moschler et al. (1962) established in 1953 and 1954 over wide areas of Virginia continue to provide samples to study residual lime effects on plant composition. This study shows the effects of lime on the mineral composition of a legume (fescue) during the first four years after treatment, and two small grains (oats and barley) nine and 11 years after lime treatment. Lime applications range from 0 to 24 tons per acre, which represent normal to extreme treatments. For further comparisons, three applications of calcitic limestone are shown for barley grown on the Tatum soil.

on the Davidson soil showed calcium, iron, and manganese contents significantly decreased, while copper, magnesium, phosphorus, and zinc levels showed some changes in composition, but were not significant. Barley grown on the Tatum soil showed calcium, iron, manganese, and phosphorus significantly changed by one or more lime levels. The calcic application on the Tatum soil showed significant changes in calcium, phosphorus, iron, manganese, and zinc levels in the composition of barley on one or more applications.

PROCEDURES

Samples were collected from lime plots in three areas of Virginia: fescue (Ky 31) samples, 6 to 10 inches in height, from Groseclose silt loam at the Blacksburg Experiment Station; oat (Andrew) samples, 15 to 18 inches in height, from Dunmore silt loam at the Glade Spring Experiment Station; barley (Wong) samples, 6 to 8 inches in height, from Tatum silt loam and Davidson clay loam at the Orange Experiment Station. The Groseclose and Dunmore soils are very productive, well-drained, and formed in residuum of dolomitic limestone and slide breccia. The Tatum silt loam is Typic Hapludults, clayey, mixed, and thermic. The Davidson clay loam is Rhodic Paleudults, clayey, kaolinitic, and thermic. The Groseclose silt loam is Typic Paleudults, clayey, kaolinitic, and mesic.

Dolomitic limestone (54.5% CaCO₃ and 44.4% MgCO₃) was used at all locations. However, on the Tatum soil, a calcitic limestone (92.2% CaCO₃ and 2.10% MgCO₃) was also used in separate plots with barley. Fertilization varied, but in most cases the rates used were less than those generally recommended; it is believed that neither crops nor fertilization materially influenced pH or base relationships in the soil. Alfalfa was grown on the Tatum soil 8 years prior to 1964, when the plots were disked and barley seeded.

Calcium, copper, iron, magnesium, manganese, and zinc were determined using a 303 Perkin-Elmer atomic absorption spectrophotometer ("Analytical Methods," 1968). Phosphorus was determined according to official methods of the A.O.A.C. (1965). Soil pH was determined with a Model G Beckman pH meter, using a 1 to 1 soil water ratio and a halfhour equilibration period. The analyses were reported on a dry weight basis. Wet digestion (nitric and perchloric acids) was used instead of dry ashing.

DISCUSSION AND RESULTS

The effects of various levels of lime application on the mineral contents of fescue, oats, and barley are shown in Table I. In general, lime treatments significantly increased the calcium contents of fescue over consecutive years, with the high treatment rates showing the highest levels of calcium. Copper levels declined progressively after the first two years and were significantly lowered the third and fourth years by the two highest lime treatments. Differences were apparent in the iron content of fescue, but there were no consistent decreases

Virginia Polytechnic Institute, Blacksburg, Va. 24061

					Table	I. Mineral	Content of]	Plant Tissue ai	nd Soil pH					
							Lime A	Vdded, Tons						
	$Plant^a$	0	-	2	3	4	9	8	12	16	24	۷l	44	164
Ca, p.p.m.	Fescue ^b Fescue ^b Fescue ^b Fescue ^b Oats ^d Barley ^a Barley ^a	5220.000 4356.000 4795.000 5010.00d 2425.00a 2956.00a 1537.50e	2447.00a 2262.50b 2150.00c	2450.00a 2118.75b 1889.00cd	5965.00bc 4840.00c 5555.00b 6160.00c	2500.00a 2225.00ab 2243.75c	6670.00ab 5996.00b 6130.00b 6690.00b	2787 : 00a 2500 : 00ab 2482 : 00b	6845.00a 6248.00a 6815.00 7535.00a	2368.75b	7365.00a 6656.00a 7100.00a 7550.00a	1887.50cd	3312.50a	3550.00a
Cu, p.p.m.	Fescue Fescue Fescue Fescue Oats Barley Barley	9.60a 6.60ab 8.60a 7.87a 11.05a 7.65a 4.02a	9.15hc 8.55a 3.65a	8.50bc 7.62a 4.20a	6.02b 6.30bc 8.25ab 7.57a	7.88c 7.87a 3.83a	7.14b 7.14a 7.86b 6.32b	10.25ab 8.25a 4.25a	9.60a 7.02ab 6.82c 5.85c	3.67a	9.62a 5.80c 6.50c 5.52c	З.77а	3.62a	3.9 4a
Fc, p.p.m.	Fescue Fescue Fescue Fescue Oats Barley Barley	116.20a 87.40a 102.20a 169.20a 68.50a 67.25a 121.00c	68.50a 41.75cd 202.75a	64.85a 36.50d 136.50b	112.20a 82.40a 106.20a 149.40a	74.80a 46.50bc 140.00bc	114.41a 84.00a 108.40a 156.40a	84.12a 50.50b 186.75a	109-90a 84-00a 101-20a 146.80a	140.00bc	114, 20a 87, 40a 103, 00a 147, 20a	112.50¢	171.50ab	134.50abc
Mg, p.p.m.	Fcscue Fescue Fescue Fescue Oats Barlcy Barlcy	2830.00a 2440.00a 2770.00a 2850.00a 1135.25d 1850.25c 825.00a	1331.00c 1940.00bc 1087.00a	1456.00c 2040.00bc 1281.00a	2655.00a 2392.00a 2705.00a 2910.00a	1648.50b 2146.00ab 1700.00a	2845.00a 2468.00a 2681.00a 2760.00a	2082.55a 2337.22a 1893.00a	2605.00a 2400.00a 2435.00b 2450.00b	1681.00a	2720, 00a 2440, 00a 2490, 00b 2470, 00b	756.00a	968.00a	1043.00a
Mn, p.p.m.	Fescue Fescue Fescue Fescue Oats Barley Barley	294.80a 224.00a 224.00a 226.20a 133.25a 84.97a 84.97a 114.00a	108.60b 83.50a 71.75c	87.85c 63.11c 40.25d	144.80b 133.60b 186.20b 184.80b	44.70d 70.39b 36.00d	120.40c 116.40bc 143.80c 139.40c	31.50e 64.16c 38.25d	94.80d 98.00d 96.60d 93.40d	34.45d	85.60d 93.20c 93.00d 90.60d	95.25b	37.36d	34.73d
, Ч Ч	Fescue Fescue Fescue Fescue Oats Barley Barley	3300,00a 3300,00a 3400,00a 3400,00a 2200,00a 2200,00a 3900,00a	2200.00a 2800.00a 4100.00cde	2200.00a 2600.00a 2600.00a	3100.00a 3300.00a 3200.00a 3500.00a	2300.00a 2700.00a 4500.00bcd	3000.00a 3300.00a 3200.00a 3600.00a	2700.00a 2700.00a 4600.00a	3300.00a 3300.00a 3300.00a 3500.00a	4800.00ab	3000, 00a 3300, 00a 3200, 00a 3600, 00a	3800.00e	4600. 00abc	5100.00a

6 J. AGR. FOOD CHEM.

r, p.p.m.	Fescue Fescue Fescue	28.30a 27.09a 30.25a 31.70a			24.60b 25.68a 30.95a 30.80a		23.15b 26.86a 30.20a 30.85ab		22.40b 26.86a 29.55a 29.15b		22.15b 26.36a 28.90a 29.35b			
	Oats Barley Barley	24.00a/ 23.11b/ 19.57a	20.75bc 21.72ab 17.94ab	22.70ab 24.28a 15.62bc		20.05c 19.42b 16.20bc		20.35bc 21.28ab 16.26bc		16.31bc		16.42bc	13.87cd	12.416
II HC	Fescue Fescue Fescue Rescue Oats Barley Barley	5.62e 5.84d 5.74d 5.68d 5.68d 5.60d 5.65c	5.32c 5.82c 5.70e	5.38c 6.18b 6.12d	6. 38d 6. 44c 6. 26c 6. 18c	5.75b 6.55ab 6.50c	6. 78c 7.00b 6.78b 6.46b	6.65a 6.72a 6.88b	7.30b 7.82a 7.62a 7.32a	7.08b	7.54a 7.98a 7.42a	5.60e	6.88b	7.30a
Fescue Blacksl Blacksl a, b, c, Gladc Orangc Orangc Tons c	analyses are a burg location, etc. averages Spring location, Dav el for zinc (oa a location, Tat a location, Tat	averages of 5 rej Groscelose s.l., (1% level), any n, Dunmore s.l., ridson c.l., 11 yv rus., 9 years um s.l., 9 years un cealeic budded	plications; othe 4 consecutive y two means not 11 years after 1 2 ars after lime a ne (barley, Dav after lime and o after lime and o	ers are average leaving the sai lime applicatio application. idson).	s of 4 replica me letter are m.	tions. significantly di	(forent; any tw	vo means havin	g the same left	ter are not sig	nificantly diff	erent (Duncan	1955).	

with increasing lime application. Magnesium contents showed little change except in the third and fourth years, with a significant decrease at the two highest lime levels. As expected, the manganese content was progressively and significantly lowered by all treatments through the 6-ton applications, with a leveling-off at the two highest rates. Phosphorus contents were unaffected. Differences were apparent in zinc levels, with a significant decrease the first and fourth years after treatment.

The residual effects of lime application, after 11 years, on the mineral contents of oats showed the calcium content to be unaffected, while the copper levels were significantly lowered by the 1- and 4-ton lime applications. Iron and phosphorus contents were unaffected. Magnesium levels were significantly increased by all lime applications. However, manganese content was progressively and significantly lowered by all treatments. Zinc levels were significantly lowered at the 1-, 4-, and 8- ton lime rates.

Comparison of the mineral contents of barley from 2 different soil types, nine and 11 years after lime applications, are also shown in Table I. For descriptive simplicity, the barley grown on Davidson soils will be referred to as Davidson barley and from the Tatum soils as Tatum barley. The residual effect of calcitic limestone after nine years on the composition of Tatum barley is shown. The Davidson series are considered good productive soils, whereas the Tatum series are considered poor to fair in productivity.

Calcium levels in Davidson barley were significantly lowered by 1-, 2-, and 4-ton lime rates, with only slight changes at the higher applications. Decrease in Cu content in barley was not consistent with treatments. Iron content was significantly decreased by 1-, 2-, and 8-ton levels of lime. A significant increase of magnesium levels in Davidson barley was shown at the 4- and 8-ton levels. Manganese was progressively and significantly lowered by 2-, 4-, and 8-ton lime rates. Phosphorus was unaffected and zinc was significantly increased by 2-ton lime levels.

Calcium levels in Tatum barley 6 showed progressive increases with lime treatments and a significant increase at the 4- and 16-ton calcic rates. Copper levels in Tatum barley were much lower than those of Davidson barley and showed no changes due to lime treatments. Iron was significantly increased by 1- and 8-ton rates of lime and also 4 tons of calcic. Magnesium levels were consistently lower than in Davidson barley and showed no significant effects due to lime or calcic treatments. As expected, manganese was significantly lowered by 1, 2, 4, and 8 tons of lime, and also significantly lowered by the 4- and 16-ton calcic treatments. Zinc levels were significantly decreased by 2-ton lime rates and significantly decreased by 4- and 16-ton calcic rates.

The various levels of lime applied in these studies resulted in a progressive shift of the pH of the soil from acid range to a level approaching or exceeding neutrality. It is not possible to predict significant liming effects from pH values alone, because of plant, soil, or climatic influences. In some instances, significant composition effects were noted with little or no change in soil pH.

These observations, in general, confirm the published literature concerning the relationship between soil acidity and plant uptake or mineral elements. Most previous studies have examined these relationships only during brief periods following lime application. These results emphasize the sustaining effects of lime treatments in the soil on the mineral composition of plants four, nine, and 11 years after application. Obviously, they have important implications in terms of sustaining optimum health in grazing animals with respect to both major and minor elements (Price and Hardison, 1963).

ACKNOWLEDGMENT

The authors are indebted to the Statistical Laboratory, Virginia Agriculture Experiment Station, Research Division, Virginia Polytechnic Institute, Blacksburg, Va.

LITERATURE CITED

- Adams, F., Pearson, R. W., "Soil Acidity and Liming," Amer. Soc. of Agrn., publ., Madison, Wis., pp. 168-201, 1967.
 "Analytical Methods for Atomic Absorption Spectrophotometry," Rev. Ed., Perkin-Elmer Corp., Norwalk, Conn., September 1968.
 Association of Official Agricultural Chemists, "Official Methods of Analysis," 10th Ed., p. 12, 2019, 1965.

- Blevins, R. L., Massey, H. F., Soil Sci. Soc. Am. Proc. 23, 296-298

- Blevins, R. L., Massey, R. F., Sou Sci. Soc. Am. Control 11 (1959).
 Duncan, D. B., Biometrics 11, 1-42 (1955).
 Fisher, T. R., Univ. Mo. Res. Bull. 947, 5 (1969).
 Foy, C. D., Brown, J. C., Soil. Sci. Soc. Am. Proc. 28, 27-32 (1964).
 Moschler, W. W., Stevens, R. K., Hallock, D. L., Virginia Agr. Expt. Sta. Bull. 159, 5-47 (1962).
 Price, N. O., Hardison, W. A., Virginia Agr. Expt. Sta. Bull. p. 11, 1963.
- 1963. Price, N. O., Moschler, W. W., J. AGR. FOOD CHEM. 13, 163-165
- (1965). Seitz, L. F., Sterger, A. J., Kramer, J. C., Agrn. J. 51, 457-459 (1959).
- Wear, J. I., Patterson, R. M., Soil. Soc. Am. Proc. 26, 344-347
- (1962).
 Weeks, E. M., Lathwell, D. J., "Soil Acidity and Liming," Amer. Soc. of Agrn., publ., Madison, Wis., pp. 256–268, 1967.
- Received for review September 15, 1969. Accepted November 24, 1969. Study supported in part by Hatch Funds.